Tuza's Conjecture for Threshold Graphs
نویسندگان
چکیده
Tuza famously conjectured in 1981 that a graph without k+1 edge-disjoint triangles, it suffices to delete at most 2k edges obtain triangle-free graph. The conjecture holds for graphs with small treewidth or maximum average degree, including planar graphs. However, dense are neither cliques nor 4-colorable, only asymptotic results known. Here, we confirm the threshold graphs, i.e. both split and cographs, co-chain sides of same size divisible by 4.
منابع مشابه
Hajós' conjecture for line graphs
We prove that, if a graph G (without multiple edges) has maximum degree d and edge-chromatic number d + 1, then G contains two distinct vertices x, y and a collection of d pairwise edge-disjoint paths between x and y. In particular, the line graph of G satisfies Hajós’ conjecture. © 2006 Elsevier Inc. All rights reserved.
متن کاملHadwiger's conjecture for line graphs
We prove that Hadwiger’s conjecture holds for line graphs. Equivalently, we show that for every loopless graph G (possibly with parallel edges) and every integer k ≥ 0, either G is k-edge-colourable, or there are k + 1 connected subgraphs A1, ..., Ak+1 of G, each with at least one edge, such that E(Ai ∩ Aj) = ∅ and V (Ai ∩ Aj) 6= ∅ for 1 ≤ i < j ≤ k.
متن کاملGallai's conjecture for disconnected graphs
The path number p(G) of a graph G is the minimum number of paths needed to partition the edge set of G. Gallai conjectured that p(G) b n+1 2 c for every connected graph G of order n. Because of the graph consisting of disjoint triangles, the best one could hope for in the disconnected case is p(G) b 2 3 nc. We prove the sharper result that p(G) 1 2 u + b 2 3 gc where u is the number of odd vert...
متن کامل-λ coloring of graphs and Conjecture Δ ^ 2
For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...
متن کاملThe Erdős-Sós Conjecture for Geometric Graphs
Let f(n, k) be the minimum number of edges that must be removed from some complete geometric graph G on n points, so that there exists a tree on k vertices that is no longer a planar subgraph of G. In this paper we show that 1 2 n k 1 n 2 f(n, k) 2 n(n 2) k 2 . For the case when k = n, we show that 2 f(n, n) 3. For the case when k = n and G is a geometric graph on a set of points in con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics & Theoretical Computer Science
سال: 2022
ISSN: ['1365-8050', '1462-7264']
DOI: https://doi.org/10.46298/dmtcs.7660